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Complete characterization is given for all orthogonal polynomials whose
derivatives are linear combinations of at most two polynomials of the same system.

Ever since 1915 when Luzin [16, p. 50] asked whether there are any
orthogonal systems in addition to the trigonometric system that are invariant
under either differentiation or integration there have been several
investigations conducted towards finding all the orthogonal polynomials
whose derivatives satisfy certain conditions. Such problems have been
solved, for example, in [2,4-13, 15, 19, 20].

In this paper we give a complete characterization of all orthogonal
polynomials whose derivatives are linear combinations of at most two
polynomials of the same system.

Let da be a finite positive measure on the real line with infinite support
and finite moments. Such a measure da will be called a distribution and the
corresponding system of orthonormal polynomials is denoted by {p n} :'- 0'

where Pn(x) = Pn(da, x) = Yn(da) x n + "', Yn > O. These polynomials Pn
satisfy the three-term recurrence relation

(I)

n = 0,1,... , where ao = 0, an = Yn-I/Yn' n = 1,2,... and

bn= I'D xp~(x) da(x).
-00

Our results are summarized in the following proposition.

* This material is based upon work supported by the National Science Foundation under
Grant MCS 81-01720.
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THEOREM. Let {Pn}~=o be a system of orthonormal polynomials
corresponding to some distribution du. Then the following statements are
equivalent.

(i) There exist two integers j and k and two sequences {en} ~~ 1 and
{cn}~= I such that j < k and

for n = 1,2,....

(ii) There exists a nonnegative constant c such that

for n = 1,2,... , where an denotes the recursion coefficient in (1).

(iii) There exist three real numbers c, band K such that c ~ 0, if c = 0
then K> 0, and the recursion coefficients an and bn in (1) satisfy

for n = 1,2,... and

for n = 0, 1, 2,....

(iv) The distribution da is absolutely continuous and there exist four
real numbers D, c, band K such that D > 0, c ~ 0, if c = 0 then K > 0, and

') r c 4 K 21a (x =Dexp l-4(x-b) -2(x-b) J

for -ro <x < roo

Moreover, if c is given by one of the statements (ii), (iii) or (iv) then in the
remaining statements it has the same value. The same comment applies to b
and K in (iii) and (iv). If c is given by (ii) then band K in (iii) and (iv)
would still be arbitrary except if c = 0 then K must be positive.

Proof The implication (ii) ==? (i) is obvious. We will prove (i) ==? (ii) ==?

(iii) ¢> (iv) ==? (ii). We need to show (iii) <= (iv) because of the comments
made about c, band K.

(i) ==? (ii): Since p~ is a polynomial of degree n - I the indexj must be
I and by comparing leading coefficients we obtain en = njan. Hence

(2)
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First assume that k = 2. Then

(3)

Differentiating the recurrence formula (1) and evaluating P~+ I' P~ and P~-l

by (3) we obtain

x (:n Pn-l +CnPn-2) +Pn

= (n + l)Pn + (an+ICn+1 +bn:J Pn-l

Expressing here XPn _2 in terms of the recurrence formula and dividing both
sides by n/an we get

which compared with the recurrence formula leads to

(4)

(5)

and

(6)

It follows from (4) that

so that there exists a constant C such that

n = 3,4,...

n = 2, 3,.... (7)
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Substituting (7) into (5) and (6) we obtain

and

137

(8)

(9)

for n = 3, 4,.... Now we can use (9) to evaluate bn - bn _ 2 In (8) and
proceeding this way we get

which we can rewrite as

n n - 1
2--2-
an an- 1

c2a~+la~

n(n+ 1)

c2a~a~_1

(n-l)n'
(10)

Since a~ > 0 for n = 1,2,... we obtain from (10) that the sequence

decreases for n = 3, 4,.... Therefore there exists a constant A > 0 such that

n=3,4,...

and thus

n ~Aa~

and

for n = 3,4,.... From (11) and (12) we conclude that

2 A(n+l) A 3

c ~ 2 2~-
an+1a n n

(11 )

(12)

and letting n -> 00 we get c = 0 so that by (7) formula (3) takes the form

n = 2, 3,...
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which proves (ii) when k = 2 with c = O. Next let k = 3. Then we have to
show that cn in (2) satisfies

with some constant c~ O. We have

n = 3, 4,... (13)

(14 )

First we will derive some relationships which we will use in establishing
(ii) =;. (iii) as well. If we differentiate the recurrence formula (1) and
substitute P~ + l' P~ and P~ _ I by the expression obtained from (14) then we
get

x (:n Pn-I + cnPn-3 ) +Pn

)
bn

= (n + 1 Pn+ n - Pn-l
an

and applying the recurrence formula to XPn-l and xPn_ 3 we end up with

(15)

Comparing the coefficients in (15) we obtain

(16)

(17)

(18)

and

(19)

for n = 2, 3,.... Now (13) follows from (19) with some constant c. In order
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to show that c in (13) is nonnegative we apply cn= canan_I an- 2 to (17) and
we obtain

which we rewrite in the form

for n = 2, 3,.... Hence there exists a constant K such that

(20)

for n = 1,2,.... If c is negative then K> 0 and n/a~ < K, -ca~ < K so that
-nc < k2, n = 1,2,... , which is impossible. Thus c in (13) is nonnegative.
Consequently we have proved (i) =:> (ii) when k in (2) equals 3. Now let
k > 3 in (2). Differentiating again the recurrence formula (1) and applying
(2) we obtain

x (:n Pn-I + CnPn- k ) +Pn

b n - 1
= (n + I)Pn + n ---"-Pn-I +an--Pn-2

an an_I

so that by the recurrence formula (1)

Hence

(21 )
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and
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(22)

(23)

for n=2,3,4,.... By (23), cn+lan_k+l=cnan+1 and thus by (22)

It follows from (21) that

a~+ I a~_k+ I

n+l n-k+l

for n = k, k + 1,... and substituting (25) into (24) we obtain

(24)

(25)

for n = k, k + 1, Hence cncn+1= 0 for n = k, k + 1,... and by (22) cn= 0
for n = k, k + 1, Thus again we see that (ii) holds with C = O.

(ii) => (iii): We proved that (14) implies (16) and (2) which is
equivalent to (iii) provided that b l = bo as well. We can show b l = bo as
follows. We have

and differentiating this and using

we obtain

so that

(26)

By th,e recurrence formula
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(27)

Comparing (26) and (27) we can conclude that b l = boo

(iv) ~ (ii): Let d be given by (iv). Then integration by parts yields

() p~(x)p[(x)da(x) = r" [Pn(x)p[(x)] , da(x)
-00 -00

(28)

=!'''' Pn(x)p,(x)[c(x - b)3 +K(x - b)] da(x)
-00

for n > l~ O. Hence

foo p~(x)p[(x) da(x) = 0,
-00

0<.I<n-3 (29)

and since da is symmetric with respect to b, Pn(x)Pn-2(X) is an even
polynomial in the variable (x - b) so that by (28)

Moreover,

foo P~(X)Pn_2(X) da(x) = o.
-00

(30)

foo p~(x)Pn_l(x)da(x)= foo [nYnxn-1 + ···]Pn_l(x)da(x) (31)
-00 -00

and by (28)

foo p~(x)Pn_3(X) da(x) = c foo Pn(x)Pn_3(X)(X - b)3 da(x) (32)
-00 -00

= c Joo Pn(X)[Yn_3Xn + ... ]da(x)
-- 00

Yn-3 Yn- 1 Yn-2 Yn-3= c--=c------ = canan_lan_2.
Yn Yn Yn-l Yn-2
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It follows from (29), (30), (31) and (32) that the Fourier series expansion of
P~ in the system Iptl is given by

which establishes (ii).

(iv) => (iii): If da is defined by (iv) then it is symmetric around b so
that all the coefficients bn in the recurrence formula (1) equal b. We can find
the coefficients an from (28), (31) and the recurrence formula. Since bn= b
for n = 0, 1, 2,..., we have

(33)
(x - b? Pn-l = anan+ I Pn+ 1 + (a~ + a~-l)Pn-l + an- 1an- Z Pn-3

and

Combining (28), (31), (33) and (34) we obtain

and thus (iii) holds.

(iii) => (iv): The moment problem for da in (iv) has a unique solution
[3, p. 80]. Hence it suffices to show that for any given real c, band K such
that c>0 and K >0 if c = 0, the equations

(35)

n = 1, 2,... , a~ = 0 and

n = 0,1,2, , have unique real solutions Ian} and Ibn} such that an> 0 for
n = 1, 2, Obviously it is sufficient to examine solutions of (35). Moreover,
if c = 0 in (35) then a~ is uniquely determined. Now suppose that c in (35) is
positive. When K = 0 in (35) then the uniqueness of Ian} was proved in [14]
and [17]. For arbitrary K we use the following argument. Let Ian} be a
sequence satisfying (35) and assume that an > 0 for n = 1,2,.... Define the
sequence of polynomials lqn} (n = 0, 1,... ) by the recurrence formula

(36)

n = 0, 1,..., qo(x) = 1. By Favard's theorem [3, p.60] there exists a
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distribution dfJ such that the polynomials qn are orthonormal with respect to
dfJ. We have by (35)

from which

2 -K +JK 2 + 4nc
an ~ 2c

so that

00

)~ a;; 1 = 00.

n=1

Thus by Karleman's theorem [21, p.59J the distribution dfJ is uniquely
determined by the sequence {an} and by qo. It follows from (36) that qn is
either even or odd depending whether n is even or odd. Hence

foo x 2n + 1 dfJ(x) = 0,
-00

Moreover, we have

n = 0,1,2,.... (37)

foo xqn(x) qn_I(X) dfJ(x) = an'
-00

foo x 3qn(x) qn_I(X) dfJ(x) = an(a~+ 1 + a~ + a~_I)
-00

and

for n = 1, 2,... , so that by (35)

foo [qn(x) qn-I(X)J' dfJ(x) = foo qAx) qn_I(X)[CX 3 +KxJ dfJ(x)
-00 -00

for n = 1, 2,.... Since qnqn_1 is an odd polynomial of degree exactly 2n - 1,
the system {qn qn -I} spans all odd polynomials. Thus

(2n-l)f
oo

x2~-2dfJ(x)=foo X2n - l [cx 3 +KxJdfJ(x). (38)
-00 -co
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We obtain from (37) and (38) that

(n+l)f
CC

xndfJ(X)=fCC x n+1[cx 3 +Kx]dfJ(x) (39)
-00 -00

for n = 0, 1,2,.... We can rewrite (39) in terms of the moments /-In of dfJ as

n = 0,1,2,.... (40)

Now we will show that

lim n-1(un)1/n=0.
n~cc

Let n be even. Then by (40)

C/-In+4 ~ (n + 1 + IKI) max{/-In+2,/-Inl

and applying this inequality repeatedly we obtain

(41 )

for N = 4, 6'00" from which (41) follows since by (37) /-In = 0 for n odd. It
follows from (39) and (41) that

is an entire function of t, and interchanging summation and integration we
obtain

fCC (tx + 1) e1x dfJ(x) = fcc elX [cx4+Kx2]dfJ(x). (42)
-00 -00

Since by (37)

fCC [cx 3 + Kx] dfJ(x) = 0,
-cc

integration of (42) with respect to t yields

t fcc e1X dfJ(x) = fcc elX [cx 3 +Kx] dfJ(x).
-00 -00

(43)

(44)
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Letting t = iu, u real, and integrating the right side of (44) by parts we
obtain by (43)

foo eiUXd{J(x)=-f
oo

eiuxf [ey3+Ky]d{J(y)dx. (45)
-00 -00 ~OO

It follows from (44) that

lim foo eiux d{J(x) = O.
U-+CO ~OO

Thus by Wiener's theorem [22, p. 261]

{J(x) = f d{J(y)
-00

is a continuous function of x. Now we can apply the inverse Fourier
transformation to both sides of (45) and we arrive at

f d{J(y) = -fr [ez 3+Kz] d{J(z) dy
o 0 -00

so that d{J is absolutely continuous and

{J'(x) = -f [ez 3+Kz] d{J(z) = -f [ez 3+Kz] {J'(z) dz.
-co -00

Therefore we obtain that {J' is absolutely continuous as well, and

{J"(x) = -[ex3+ Kx] {J'(x).

Consequently,

{J'(x) = const exp [- ~ x 4
- ~ x 2 J

where the constant is uniquely determined by the condition

We have

640/40/H

(46)
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so that by (46)
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ai = J~oo x
2

exp l- ~ x
4

- ~ x
2 JdxIJ~oo exp l- ~ x

4
- ~ x

2 J dx.

(47)

Thus we proved that if {an} satisfies (35) and an > 0 for n = 1,2,... then at is
given by (47), which means that the sequence {an} is uniquely determined.
Thus the theorem has been completely proved.
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